首页> 外文OA文献 >Autonomous learning multi-model systems from data streams
【2h】

Autonomous learning multi-model systems from data streams

机译:从数据流自主学习多模型系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, an approach to autonomous learning of a multi-model system from streaming data, named ALMMo, is proposed. The proposed approach is generic and can easily be applied also to probabilistic or other types of local models forming multi-model systems. It is fully data-driven and its structure is decided by the nonparametric data clouds extracted from the empirically observed data without making any prior assumptions concerning data distribution and other data properties. All meta-parameters of the proposed system are obtained directly from the data and can be updated recursively, which improves memory- and calculation-efficiency of the proposed algorithm. The structural evolution mechanism and online data cloud quality monitoring mechanism of the ALMMo system largely enhance the ability of handling shifts and/or drifts in the streaming data pattern. Numerical examples of the use of ALMMo system for streaming data analytics, classification and prediction are presented as a proof of the proposed concept.
机译:本文提出了一种从流数据中自主学习多模型系统的方法,称为ALMMo。所提出的方法是通用的,并且还可以容易地应用于形成多模型系统的概率模型或其他类型的局部模型。它是完全由数据驱动的,其结构由从经验观察到的数据中提取的非参数数据云决定,而无需对数据分布和其他数据属性进行任何先验假设。所提出系统的所有元参数都可以直接从数据中获得,并且可以递归更新,从而提高了所提出算法的存储和计算效率。 ALMMo系统的结构演变机制和在线数据云质量监视机制在很大程度上增强了处理流数据模式中的移位和/或漂移的能力。提出了使用ALMMo系统进行流数据分析,分类和预测的数值示例,以证明所提出的概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号